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In this paper, the affine connection approach �D. Baalss and S. Hess, Phys. Rev. Lett. 57, 86 �1986�� will be
defined in terms of a local transformation. Accordingly, the macroscopic anisotropy of the nematic medium
will be conceived as resulting from a local transformation where, at each point of the sample, the spherical
molecules of an idealized hypothetic isotropic liquid have their shape changed to the ellipsoidal form of the
nematic liquid crystals molecules. When such local character is imposed to this transformation, the patterns
determined by the director configuration of the nematic medium acquire an intrinsic curvature whose correct
treatment requires the replacement of the techniques and methods of the usual calculus by those of the
differential geometry of nonflat surfaces. Such an approach will be used in the calculus of the nematic elastic
constants. As a result, the dependence of the elastic constants on the scalar order parameter, on the eccentricity
of the nematic molecules, and on the interaction between them will be determined and compared with the
experimental data of the 4-methoxybenzylidene-4-n-butylaniline.
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I. INTRODUCTION

Some years ago, Hess and co-workers �1–5� had proposed
that the anisotropic rheological properties of a liquid crystal
could be obtained by means of an affine transformation in
which the spherical potential of spherical molecules, of a
hypothetic isotropic liquid, is deformed to assume the ellip-
soidal shape of the liquid crystals’ interacting potential. The
main aim of this paper is the proposition of a geometrical
method that generalizes such an approach in such a way that
such deformation can be taken as position dependent.

We will start with the observation that in a usual nematic
sample the director orientation is inhomogeneous and, as
consequence, the molecular deformation producing the affine
connection approach is position dependent and the corre-
sponding mathematical tools must take it into consideration.
Essentially, it will be shown that after such transformation
the usual derivatives do not transform as usual covariant vec-
tors and, as a consequence, they must be replaced by cova-
riant derivatives. The mathematical tools describing such
change are today usual in many branches of the physics but,
to our knowledge—save for the case where the liquid crys-
tals defects are used to simulate the behavior of a light path
at the neighborhoods of cosmological singularities �6�—such
an approach is not usual in the liquid crystals physics. As we
will show ahead, the natural way to implement it is to con-
sider that the use of the Hess affine connection approach
maps the nematic textures on a nonflat differentiable surface.

To avoid the criticism that we are introducing an unfamil-
iar and unnecessary formalism, it will be used here to obtain
an absolutely nontrivial result, the nematic elastic constants
will be derived from a very usual and simple starting point;
the free energy must be a scalar constructed with the funda-
mental mathematical objects of the theory �7�. The determi-
nation of the thermal behavior of elastic constants of the
nematic liquid crystals �NLC� �8–10� is an old-standing

problem for which experimental �11–15�, computational
�16,17�, and analytical methods �18–23� have been applied
and, for each of these approaches, a new set of results have
been found. Nevertheless, despite such developments, the
understanding of the elastic constants is not yet complete
�24�; only the leading terms of their dependence on the scalar
order parameters is firmly established �25� and, even re-
cently, the nature of the anchoring of the molecules of these
materials at the surface of the sample has been a theme of
intense research �26–29�. Due to the broadness of this sub-
ject it is impossible to quote all relevant works on the area.
For example, in the last years the interest on the role of the
molecular rotational entropy on the elastic constants has
arisen �30–37�. Surely, many questions related with impor-
tant issues remain to be investigated and will not be consid-
ered here. The main aim of this work is to emphasize that the
tolls of differential geometry are relevant and may be used in
the study of the nematic phenomenology. In our approach to
the nematic elastic constants some fundamentals of the affine
connection approach will be combined with the fundamen-
tals of the pseudomolecular approach �38–41� to produce an
expression that, blends them to obtain the elastic constants in
terms of these parameters.

Finally, as an application, our results will be compared
with the experimental data of the 4-methoxybenzylidene-4-
n-butylaniline �MBBA�. We believe that our final results are
sufficiently solid to justify the introduction of such math-
ematical apparatus on the physics of the liquid crystals. The
paper is written in a way to avoid mathematical subtleness
and the physical content will be detached.

A. Fundamentals

According to Hess �1–5�, the interaction between the liq-
uid crystals’ molecules can be obtained from the interaction
between the spherical molecules of a common hypothetic
isotropic liquid, once their spherical potential is deformed
until it assumes the ellipsoidal shape of the nematic mol-
ecules. This challenging assumption considers the geometry*Electronic address: simoes@uel.br

PHYSICAL REVIEW E 75, 061710 �2007�

1539-3755/2007/75�6�/061710�11� ©2007 The American Physical Society061710-1

http://dx.doi.org/10.1103/PhysRevE.75.061710


generated by the interacting potential, the essence of the an-
isotropic behavior found on the liquid crystals phenomenol-
ogy and, if it cannot completely explain the diversity of the
liquid crystals’ behavior �42� it has, at least, successfully
described many rheological problems �1–5�. In mathematical
terms, it is assumed that the ellipsoidal interaction potential
�E between nematic molecules can be transformed in a
spherical interaction potential �S, once the vector r� connect-
ing two particles is submitted to an appropriated affine trans-
formation. That is,

�E�rS� = �S�rE� , �1�

where the indexes E and S stand for ellipsoidal and spherical
symmetries, respectively. Namely, the nonspherical potential,
�E, can be substituted by a spherical, �S, if the distance
between two points is given by a metric in which two points
on the nonspherical equipotential surface become “equidis-
tant” from the potential center. As consequence, there would
be an affine transformation leading the physics of liquids
formed with spherically interacting molecules to the physics
of liquids with ellipsoidal ones, and vice versa. That is, the
measurements of distances in the two potentials would be
connected by relations having the form

rS
i =

drS
i

drE
k rE

k and
d

drS
j =

drE
i

drS
j

d

drE
i , �2�

where the first equation is the law of transformation for vec-
tors, while the second gives the law of transformation for
derivatives. Hereafter, the sum rule over repeated indexes is
being assumed. Of course, these relations satisfy the inverse
relations

drS
i

drE
k

drE
k

drS
j = � j

i . �3�

An essential consequence of these hypotheses—the mo-
tive of this work—can be understood when it is assumed that
the nematic sample is not homogeneously aligned, and the
corresponding affine transformation becomes effectively
point dependent. Under such a condition the derivatives of a
vector do not behave as a tensor and a new definition of
derivative must be introduced. Namely, all quantities having
the form dvi /drj, where vi is the i component of any vector
v� , must transform according to Eq. �2� and, consequently,

dvi

drj →
drE

m

drS
j

d

drE
m� drS

i

drE
k vE

k� =
drE

m

drS
j

d2rS
i

drE
mdrE

k vE
k +

drE
m

drS
j

drS
i

drE
k

dvE
k

drE
m .

�4�

When the director configuration is not homogeneous,
changing from point to point, the first term of the high side
of the above equation becomes non-null, revealing that
dvi /drj is not a tensor under the transformation given in Eq.
�2�. This behavior is usually found when point dependent
coordinates transformations are being considered. The stan-
dard way to deal with it modifies the rule of differentiation;
normal derivatives have to be changed to covariant deriva-
tives �43� in such a way that the anomalous term of the
above equation is canceled. Furthermore, even when the use

of covariant differentiation is required, it can happen that
such a procedure has resulted from an “inconvenient” system
of coordinates, and an appropriated change of coordinates
could restore the normal derivative rule. Nevertheless, there
are situations in which the use of covariant derivatives be-
comes unavoidable, and there is no change of coordinate
able to reestablish the normal derivation rule. In this case,
the surface where the physical phenomena happens has an
intrinsic curvature.

The first result of this paper will be the demonstration that
the affine connection approach reveals that the mathematic
description of the nematic textures has necessarily associated
a surface with an intrinsic curvature and, consequently, its
correct description requires the use of mathematical tools
consistent with it. For example, covariant derivatives must
substitute the usual derivatives. As all nematic textures arise
from variations of the director and, furthermore, its varia-
tions are related to the elasticity of the sample, we will apply
such an approach to study the nematic elasticity. It will be
shown that from very simple scalar functions, constructed
with the correct covariant differentiation rule, a description
of the nematic elasticity can be obtained. At the end, the
results of such description will be compared with experimen-
tal data of the MBBA.

II. CURVATURE OF NEMATIC SAMPLE

Equation �4� revealed the necessity of the use of covariant
derivatives when the affine connection approach is used to
describe nematic physics. In order to do that, the metric of
the surface generated by the nematic textures must be deter-
mined. This is the aim of this section. To give a metric pre-
scription we remember that the distance in a spherical geom-
etry is given by

dS
2 = �ijrS

i rS
j , �5�

while, in a nonspherical geometry, it is given by

dE
2 = gijrE

i rE
j , �6�

where, for the physical situation that we are studying, gij
gives the metric induced by the equipotential surfaces of the
nonspherical potential. The affine connection approach af-
firms that the physical phenomena happening in the non-
spherical equipotential surface can be obtained, through an
affine transformation, from one happening in a spherical
equipotential surface. To obtain such law of transformation,
given in Eq. �2�, it will be observed that the points localized
along the same ellipsoidal equipotential surface are “equidis-
tants” from a potential center. From this point of view, the
Hess hypotheses can be formulated by saying that for a el-
lipsoidal symmetric potential there is an associated spheri-
cally symmetric potential satisfying the rule,

d2 � dS
2 = dE

2 . �7�

Therefore the passage from the ellipsoidal potential to the
spherical one, or vice versa, stated in Eq. �1�, can be realized
through a metric change in the surface in which the phenom-
enon is being studied. That is, the measurements of distances
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in the two potentials must be connected by some law, deter-
mined by Eq. �2�. To obtain a formal relation between the
metric gij and this change of coordinate system it is enough
to observe that when this equation is substituted in Eqs. �1�,
�5�, and �6�, it is obtained,

�ijrS
i rS

j = �ij

drS
i

drE
k

drS
j

drE
l rE

k rE
l . �8�

That is,

gkl =
drS

i

drE
k

drS
j

drE
l �ij . �9�

The use of superior and inferior indexes follows the usual
rule of contravariant and covariant vectors and will be illus-
trated below, in the context of the present model. They are
related with direct and inverse transformation laws; tensor
components that transform according to vectors receive su-
perior indices and are called contravariants and those that
transform according with the inverse transformation receive
inferior indices and are called covariants. In this way, the
metric, gij, given in Eq. �6� is contravariant, and its inverse,
gij, which can be obtained from the rule,

gikg
kj = �i

j , �10�

is contravariant. These rules give a metric form to the affine
transformation method; once a physical quantity is known in
a spherically symmetric system, Eq. �1� says that it is enough
to apply on it the transformation to the ellipsoidal system to
obtain the corresponding expression in the nonspherical sys-
tem. Nevertheless, to obtain a explicit form to this rule it is
necessary to know the metric gij that generates such a trans-
formation. The obtainment of such a metric in terms of the
nematic parameters is our next objective.

A. Ellipsoidal order parameter

It will be assumed here that the metric gij is determined
from the same matrix Eij that characterizes the quadratic
form of a uniaxial ellipsoid. A generalization for a biaxial
NLC is straightforward and will appear elsewhere. Given a
uniaxial ellipsoid there is always a local coordinate system in
which it assumes the form

x1
2

a2 +
x2

2

b2 +
x3

2

b2 = 1, �11�

where its three main axis lengths are given, respectively, by
�a ,b ,b	, each of them pointing to the directions given, re-
spectively, by the three orthonormal vectors, �e�x ,e�y ,e�z	,
where

e�x = �1,0,0�, e�y = �0,1,0�, e�z = �0,0,1� , �12�

x1, x2, and x3 being the coordinates along them. In a compact
form, this ellipsoid can be written as Eij

d xixj =1, where

Eij
d =


1

a2 0 0

0
1

b2 0

0 0
1

b2

� �13�

is the diagonalized matrix characterizing the ellipsoid, which
is completely characterized by the eigenvalues,

� 1

a2 ,
1

b2 ,
1

b2 , �14�

and eigenvectors given by Eq. �12�. The index d in Eij
d are

used to remember that the corresponding characteristic ma-
trix Eij

d is yet diagonal. The matrix Eij representing an arbi-
trary uniaxial ellipsoid, having the same semiaxis lengths,
can be obtained from the matrix Eij

d through an arbitrary
rotation in which its three orthonormal main axis �e�x ,e�y ,e�z	
are rigidly rotated to a new set of orthonormal �p� ,q� ,r�	 vec-
tors. Let us demonstrate that after such rotation Eij assumes
the form

Eij =
1

a2 pipj +
1

b2qiqj +
1

b2rirj . �15�

To do it, it is enough to demonstrate that p� , q� , r� are the
eigenvectors of Eij with the set given in Eq. �14� as the
eigenvalues. Using the orthonormal relations, Eq. �17�, be-
tween p� , q� , and r�, it is trivial to compute eigenvectors and
eigenvalues of E, and observe that

Eijp
j =

1

a2 pi, Eijq
j =

1

b2qi, Eijr
j =

1

b2ri. �16�

So, p� , q� , and r� are the normalized eigenvectors of E and
�1/a2 ,1 /b2 ,1 /b2	 the corresponding eigenvalues. As a ma-
trix is completely characterized by its eigenvalues and eigen-
vectors, the matrix given in Eq. �14� gives the rotated version
of the one given in Eq. �13�.

An important property of these eigenvectors is that they
compose a complete set and, therefore, are linked by the
relation �44�

pipj + qiqj + rirj = �ij . �17�

Combining this equation with Eq. �14�, it is obtained

Eij =
1

a2 pipj +
1

b2 ��ij − pipj� =
1

1 − e
��ij − e pipj	 , �18�

where

e = 1 − b2 �19�

is the ellipsoid eccentricity and p� corresponds to the symmet-
ric axis of the uniaxial ellipsoid. We have fixed the length of
the uniaxial semiaxis of the ellipsoid as a=1, to be in accord
with the normalization that we have adopted to the sphere
with radius r=1.

So, in an arbitrarily rotated coordinate system, this ellip-
soid can be written as
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Eijy
iyj = 1. �20�

As the condition e=0 reduces the ellipsoid to a sphere of
radius r=1, the anisotropy found in the rheological param-
eters can be interpreted as the deformation induced on the
nematic medium by the nonspherical equipotential surfaces.
Consequently, this anisotropy can be quantified by measuring
how much this ellipsoid differs from an equivalent sphere.
To obtain such a sphere we remember that, according to Eq.
�13�, the tensor characterizing an ellipsoid is a linear func-
tion of the inverse of the square of its axes and, furthermore,
it would be reduced to a sphere if these axes become equal.
Accordingly, the equivalent sphere can be defined as that one
for which the radius r satisfies the relation

1

r2 =
1

3
Tr�E� =

1

1 − e
�1 −

e

3
� . �21�

Namely, the square of the inverse of its radius is given by the
mean of the inverse of the square of the ellipsoid semiaxis.
Therefore if E is the characteristic matrix of an ellipsoid, the
elements of the characteristic matrix of the equivalent sphere
would be given by Sij =�ij Tr�E� /3 and, consequently, the
ellipsoidal deformation �E could be defined by the differ-
ence between the ellipsoid and its equivalent sphere,

�Eij = Eij − Sij = Eij −
1

3
�ij Tr�E� , �22�

which, with the use of Eqs. �18� and �21�, becomes

�Eij =
e

1 − e
�1

3
�ij − pipj . �23�

That is, the ellipsoidal deformation �E is determined by
the product of two distinct terms, e / �1−e� and

Qij
E =

1

3
�ij − pipj . �24�

This last term is the anisotropic component of the ellipsoidal
deformation. It coincides with the quadrupolar momentum
tensor �45�, being formally similar to the expression of the
tensorial order parameter of a nematic liquid crystal. In fact,
as stated by de Gennes �7�, the tensor order parameter can be
measured from the difference between the anisotropic and
isotropic parts of a given physical property. Its was just this
that has been done with Eij to arrive at Eq. �23�. In that
equation, the eccentricity term, e, furnishes the magnitude of
the ellipsoidal elongation; different eccentricities correspond
to different molecular shapes; when e�0, we have that b
�1, corresponding to a discotic phase and when e�0, we
have that b�1, corresponding to a calamitic phase.

Summarizing, the ellipsoidal matrix, given in Eq. �15�,
can be written as

Eij = Sij +
e

b2Qij
E =

1

1 − e
��1 −

e

3
��ij + eQij

E , �25�

where the first term corresponds to the spherical �isotropic�
part of Eij and the second term describes its deviation from
the spherical shape. As defined by Hess, and explained
above, the affine-connection approach can be realized by de-

forming a spherical interacting potential up to the point in
which it assumes the ellipsoidal form of the nematic mol-
ecules. So, such deviation is described by a term that is struc-
turally equal to the order parameter tensor. It will be from
this form of Eij that the metric gij will be constructed; it will
consist of an isotropic part, proportional to �ij and an aniso-
tropic part, proportional to Qij.

B. Thermodynamics in the metric

Above, it has been shown that the matrix Eij characteriz-
ing an ellipsoid differs from a sphere by a tensorial term, Qij

E,
which is formally identical to the nematic order parameter
Qij. It is important to stress that—up to this point—this
equality is restricted to the form of these mathematical ob-
jects, conceptually they describe different objects, this being
the reason why we have introduced the superscript E on Qij

E.
The aim of this section is to show that such formal equality
can be improved until the point where both concepts become
identical and a temperature dependent metric is obtained.
This remarkable result stays in the essence of the forthcom-
ing use of the Hess approach and its physical motivation can
be easily understood: for temperatures greater than the NI
phase transition point the nematic liquid is isotropic and all
directions are equivalent, for temperature smaller than the NI
phase transition point the liquid becomes anisotropic and, at
each point, many physical properties acquire a privileged
direction. So, at least from this naive point of view, it is
hoped that a temperature dependent metric can be con-
structed. We will introduce such a study by remembering
some standard considerations about the physical meaning of
the microscopic order parameter and, afterwards, we will use
it to construct a macroscopic order parameter. In our next
developments, especially in Eq. �26�, the distinction between
microscopic and macroscopic order parameter is the standard
one and follows the usual approach �7�, they are discussed
ahead for clarity of our reasoning.

The anisotropy of liquid crystal materials can be observed
at two levels, macroscopically and microscopically. On ther-
modynamical measurements it appears macroscopically; but,
it has a microscopic origin, the LC molecules have an intrin-
sic microscopic anisotropy that, when averaged, may or may
not be observed on macroscopic measurements, it depends
on the temperature. Let us distinguish between the micro-
scopic and the macroscopic nature of Qij by putting a hat
over its vectorial parameter n� when it denotes a microscopic

unitary vector. So, Qij�n̂� means that n̂� is a microscopic ran-
dom variable—the molecular long axis—and the associated
order parameter is a microscopic order parameter. Likewise,
without a hat on n� , Qij�n� means that n� is a macroscopic
variable, the director, and the corresponding order parameter
is a macroscopic order parameter. The connection between
these two quantities is made by assuming that the micro-

scopic random variable n̂� oscillates so fast that when Qij�n̂�
is averaged, on the time and/or on neighborhoods of a point,
such average determines the macroscopic order parameter
Qij�n�, where n is the usual director �7�, and Qij has the same
form as given in Eq. �24�, with n̂ replaced by n, from which
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the uniaxial macroscopic anisotropy can measured. In math-
ematical terms �7�,

�Qij�n̂�� = SQij�n� , �26�

where �x� stands for the statistical average of the random
variable x. As anticipated above, S gives the intensity by
which the random oscillations makes the microscopic aniso-
tropy be observed on a macroscopic scale. To get such a
result it is enough to multiply the left side of the above
expression by the macroscopic order parameter, Qji�n�, and
take the trace of the resulting expression,

Qji�n��Qij�n̂�� = SQji�n�Qij�n� , �27�

to obtain

S =
3

2
�−

1

3
+ ��n̂� · n��2�� . �28�

This equation is the standard expression for scalar order pa-
rameter �7�.

Let us now consider that the interacting potential attached
to each molecule of a nematic sample has an equipotential
surface that can be represented by a matrix Eij. When, in the
neighborhoods of a point, a large set of such objects are
taken together we can consider, in exact analogy with Eq.
�26�, that such a set may be, or not, aligned, generating, or
not, a nematic phase. The representation of the macroscopic
results of this microscopic alignment can be made through
the matrix Qij

E by assuming that it satisfies the same relation
of a microscopic order parameter,

�Qij
E�n̂�� = SQij�n� , �29�

which means that the microscopic anisotropy of each mol-
ecule becomes coupled with the ones at its neighborhoods;
the long axis of each of them oscillates along the same di-
rection, generating a nematic phase. An important conse-
quence of the above reasoning is that it gives macroscopic
consequences to the microscopic ellipsoidal anisotropy of
each nematic molecule. As Qij

E appears in the definition of
Eij, Eq. �25� reveals that the ellipsoidal matrix Eij also has a
macroscopic counterpart. That is, in giving meaning to �Qij

E�
a corresponding meaning must be also given to �Eij�. Such a
matrix measures the passage from a macroscopic isotropic
symmetry �determined by the term �ij�, to a macroscopic
ellipsoidal symmetry of a nematic phase. It will be assumed
here that such anisotropy is realized through a macroscopic
metric gij. That is, gij =N�Eij�; or

gij = N�1

3
Tr�E��ij +

e

1 − e
�Qij�n̂��

=
N

�1 − e���1 −
e

3
��ij + eSQij�n� , �30�

where N is a normalization constant introduced in order to
assure the director normalization,

nini = gijninj = 1.

A straightforward calculation reveals the value of N, showing
that

gij =
1

�3 − e�1 + 2S��
��3 − e��ij + 3eSQij�n�	 �31�

and

gij =
1

�3 − e�S − 1��
��3 − e�S + 1���ij + 3eSQij�n�	 . �32�

On these equations it is assumed that the metric induced by
the ellipsoidal anisotropy depends on the scalar order param-
eter S and, therefore, it is macroscopic and determined by the
nematic temperature; at the isotropic phase �S=0� the metric
is spherical and macroscopic measurements would be isotro-
pic. As the temperature is reduced, the nematic-isotropic
phase transition creates a non-null S, which induces a mac-
roscopic ellipsoidal anisotropy described by the order param-
eter S and the eccentricity e. It is important to observe that
this metric has as aim the realization of the Hess hypotheses
of the affine connection approach; it is a thermodynamic
effect induced by the anisotropies of the nematic phase, as
will be proved with the establishment of Eq. �36�. It does not
mean, for example, that the real metric of the space in which
the phenomena happens has changed.

C. Connections and curvature

Here, it will be shown that in the presence of nematic
textures the application of the affine connection approach
must be necessarily followed by the use of covariant differ-
entiation; the Hess hypothesis leads to a nonplanar three-
dimensional surface whose scalar curvature is nonzero. To
arrive at these results some formulas of differential geometry
will be used. Their deductions are straightforward and a
“physical derivation” of them can be found, for example, in
the classical Weinberg book �43�. To calculate the curvature
associated with the metric gij, the connection,

�ij
k =

1

2
gkm� �gmj

�xi +
�gmi

�xj −
�gij

�xm , �33�

must be evaluated. Once having �ij
k , the Ricci tensor, Rij,

Rij = Rikj
k ,

Rimj
k =

��im
k

�xj −
��ij

k

�xm + �im
n � jn

k − �ij
n �mn

k , �34�

can be calculated. With these objects, the scalar curvature R,

R = gijRij , �35�

can be determined. All these calculations are straightforward,
but lengthy. At the end, it can be shown that the connection is
given by

�ij
k =

3eS

2�3 − e�1 + 2S���3 − e�1 − S��
��3 − e�1 + 2S���nk��inj

− � jni� + nj��in
k − �kni�� − �3 − e�1 − S��ni�� jn

k + �knj�

+ 3eSnin
m�nk�mnj + nj�mnk�	 ,

and the scalar curvature is given by
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R =
9e2S2

2�3 − e�1 − S��2 �n� · �� � n���2 −
3eS

�3 − e�1 − S��

��� �n���� · n�� + n� � ��� � n��� . �36�

This result justifies all developments so far undertaken. It
reveals that the scalar curvature associated with the textures
of a nematic sample is nonzero, and given by the sum of two
usual nematic textures, the bend texture term, �n� · ���n���2,

and the saddle-splay texture term, �� �n���� ·n��+n� � ��� �n���.
As R is a scalar quantity, this quantity will be always the
same in all systems of coordinates and, therefore, it cannot
be eliminated. The curvature that it expresses is a basic prop-
erty of the affine connection approach; it intrinsically asso-
ciates the nematic textures with a nonflat surface. At the end
of this work we will retake this point and discuss its physical
meaning.

D. Naive approach to elastic energy

Above, it has been learned that when the affine connec-
tion approach is used the nematic textures must be described
by a nonflat surface. Consequently, necessarily, the usual de-
rivatives must be substituted by covariant derivatives �43�,

�iv
j → Div

j � �iv
j + �ik

j vk. �37�

In order to see what can be gained with such improvement, a
very naive model for the elastic energy stored in the elastic
textures will be now considered. The elastic constants will be
computed with the use of the above derivative rule, and the
results will be compared with those obtained with the use of
normal derivatives. Ahead, more elaborate models will be
presented.

A straightforward generalization of Hook’s law to the liq-
uid crystals medium reveals that around a given point the
elastic energy must be at least proportional to the variations
of the director, and the square of the scalar order parameter
�46�. That is,

E � 	S2��in
j�2.

By using the usual derivatives rules it is straightforward to
show that, in terms of the usual expressions for the textures
of the nematic phase, this equation can be rewritten as

E � 	S2���� · n��2 + �n · �� � n��2 + �n � �� � n��2

− �� �n���� · n�� + n� � ��� � n���	

According to this simple model, all elastic constants of
the nematic liquid crystals would be identical, no difference
between their values would be observed. Otherwise, when
normal derivatives are substituted by covariant derivatives it
is found that

E � 	S2��in
j�2 → 	S2�Din

j��Dinj� = 	S2gjkgim�Dink��Dmnj� .

After a straightforward calculation it is found that

E � 	S2���� · n��2 + �1 −
3e�6 − e�S + 2��
2�3 + e�S − 1��2 ��n · �� � n��2

+ �1 −
3eS

3 + e�S − 1���n � �� � n��2 − „�� �n���� · n��

+ n� � ��� � n���… .

Revealing a nontrivial expression to the elastic constants,

K11 � 	S2,

K22 � 	�1 −
3e�6 − e�S + 2��
2�3 + e�S − 1��2 �S2,

K33 � 	�1 −
3e�6 − e�S + 2��
2�3 + e�S − 1��2 −

9e2S2

2�3 + e�S − 1��2�S2.

�38�

The introduction of the covariant derivative has given a
dependence of the nematic elastic constants on molecular
eccentricity e and on the scalar order parameter S. As it will
be shown below, see Eqs. �51�, �52�, and �55�, this expres-
sion furnishes an acceptable ratio between K11 and K22, but it
strongly fails for the value of K33. As an immediate inspec-
tion shows, even the simplest experimental data of calamitic
compounds are always related by the rule, K22�K11�K33
�7�. Nevertheless, the above expressions obeys the relation
K33�K22�K11. Ahead, a more elaborated model will be
proposed. Essentially, it will be learned from these models
that the ratio K33/K11 is also determined by the multipolar
interaction between the nematic molecules, a feature which
is not observed on K22/K11. This is the physical fact that
explains the differences found on the experimental data of
these ratios �24�.

III. ELASTIC ENERGY

Above, a naive model was used to evaluate the elastic
energy stored on the nematic textures. Even furnishing an
expression for the elastic constants as a function of the mo-
lecular eccentricity and the scalar order parameter, the ex-
pression for K33 disaccords with the experimental data. Here,
such a model will be improved and a global agreement with
the experimental data will be intended. The starting point
will be the usual one; since the free energy is a scalar func-
tion, it would be constructed from scalars obtained from the
simplest unitary invariants of the mathematical objects that
characterize the liquid crystals theory �7�. Furthermore, in
order to arrive at such expression some essential physical
ingredients must be added to the ones already considered in
the above naive model; beyond the geometry aspects con-
tained in the use of covariant derivatives, the relative orien-
tation of the interacting anisotropic molecules and the dis-
tance between them have to be explicitly considered.

Let us begin by considering the angular interaction �47�,
which has been extensively formulated in terms of tensorial
products of the order parameter,
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Ij
i�p̂, q̂� = Qik�p̂�Qkj�q̂� . �39�

This is a function of random variables, p̂ and q̂ localized,
respectively, at different points r�1 and r�2, and only the ther-
modynamic quantities generated by it can have macroscopic
meaning. To obtain them, it will be assumed that the con-
nected part of the two points function �Qik�p̂�Qkj�q̂�� can be
neglected and, consequently, we can approximate �Ij

i�p̂ , q̂��
by �Ij

i�p̂ , q̂��= �Qik�p̂���Qkj�q̂�� �48�. So, using Eq. �13�, we
arrive at

�Ij
i�p̂, q̂�� = S2Qik�p�Qkj�q� = S2Ij

i�p,q� . �40�

This is the basic expression from which the elastic constants
have been calculated �46�. To obtain scalar invariants from
this tensor at least two procedures can be undertaken. It is
enough to take its trace,

i1�r�1,r�2� = �Ii
i�p̂, n̂�� = S2Ii

i�p,n� = S2�−
1

3
+ �p� · q��2� ,

�41�

or contract it with the radius vector r�=r�1−r�2, representing
the distance between the nematic domains p� and q� . That is,

i2�r�1,r�2� = �rirjIij�m̂, n̂�� = S2rirjIij�m,n� . �42�

Each of these invariants will be used to obtain expressions
for the elastic energy of a nematic sample. The first of them,
i1, expresses an angular interaction, the Maier-Saupe interac-
tion �49�. That is, two directors, p� and q� , only are elastically
coupled when S�0, otherwise, in the isotropic phase �S
=0�, they are uncoupled. Furthermore, through the product
rirj, i2 couples the anisotropic distance between the nematic
molecules with this angular interaction, just the quantities
that we supposed would describe the nematic elasticity. Con-
sequently, it is from i2 that a best description of the nematic
elasticity would be possible. Anyway, we will begin our
study looking for the elastic constants predicted by the in-
variant i1. There are two main reasons for this procedure, it
will explicitly show the limits of a pure angular description
of the nematic elasticity, and it will be used in the interpre-
tation of the results that will be found ahead in the study of
i2.

So, observe that the change r�2=r�1+r� gives

Qkj�r�2� = Qkj�r�1 + r��

� Qkj�r�1� + rmDmQkj�r�1� +
1

2
rmrnDmDnQkj�r�1� .

�43�

Using the mean field approximation, it is found that

�Ij
i�r�1,r�2�� = �Qik�r�1�Qkj�r�1 + r���

� �Qik�r�1�Qkj�r�1�� + �Qik�r�1�rmDmQkj�r�1��

+
1

2
�Qik�r�1�rmrnDmDnQkj�r�1�� . �44�

Now we will consider an important substitution for the prod-
uct of the variables rmrn that will be used ahead in the com-

putation of i1 and i2. As rmrn is a second rank symmetric
tensor, it could be written in terms of the natural second rank
symmetric tensors of the theory �25,38�, Qmn and �mn,

rmrn = AQmn + B�mn, �45�

where A�r� and B�r� are constants to be determined, whose
physical meaning will be important to interpret our elastic
theory. As the trace of Qmn is null, Tr�Qnm�=0, we immedi-
ately have

B�r�� =
r2

3
,

which shows that B�r�� measures the isotropic component of
rmrn, as is already evident in Eq. �45�. Nevertheless, the
meaning of A�r� is not so evident. Using the facts that
QmnQnm=2/3 and Qmn�nm=0, we straightforwardly obtain

A�r�� =
2

3
rmrnQmn,

which shows that A�r� is proportional to the quadrupolar
energy term, at the point r� �50�.

Using these definitions on �Ij
i�r�1 ,r�2�� we get

�Ij
i�r�1,r�2�� = �QikQkj� + �Qik�r�1�rmDmQkj�r�1��

+
1

2
�Qik�r�1��A�r��Qmn + B�r��gmn�DmDnQkj�r�1�� .

�46�

On the above equation we have made the change �ij→gij,
defined in Eq. �9�.

Now, all the formalism developed so far will be gathered
to compute the nematic elastic constants. It will be assumed
that the term i1 contributes to the free energy through a term
with the form

F1 = F0 +� d3r1d3r2a1�r�2 − r�1��Ii
i�r�1,r�2�� , �47�

where a1�r�1−r�2� expresses the coefficients of the energy in
terms of �Ij

i�r�1 ,r�2��. Making the change of the parameters of
integration defined above, we get

F1 = F0 +
1

2
� d3r1d3ra1�r��

���Qik�r�1��AQmn + Bgmn�DmDnQkj�r�1��	

= F0 +
1

2
� d3r1

���Qik�r�1��CAQmn + CBgmn�DmDnQkj�r�1��	 , �48�

where we have disregarded the linear team in rmDm, a cho-
lesteric term �25,38�, and

CA =� d3ra1�r��A�r�� =
2

3
� d3ra1�r��rmrnQmn,

CB =� d3ra1�r��B�r�� =
1

3
� d3rr2a1�r�� . �49�
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Using the definition of covariant derivative given above,
and after a straightforward—but not short—calculation we
arrive at

F1 = F0 +
1

2
� d3r1�K11��� · n��2 + K22�n · �� � n��2

+ K33�n � �� � n��2 + KzTf	 �50�

where

K11
�1� = −

2CBS2��3 − e�2 + 2e2S2�
3�3 − e�1 + 2S���3 − e�1 − S��2„3�3 + 
S�

− e�3 − S�3 − 
�1 + 2S��	… ,

K22
�1� = �1 −

3eS

2

�6 − e�S + 2��
�3 + e�S − 1��2�K11

�1�,

K33
�1� = −

2CBS2�3 − 2
S���3 − e�2 + 2e2S2�
3�3 − e�1 − S��2 , �51�

and 
=CA /CB is proportional to quadrupolar momentum, de-
fined in Eq. �49�. A noticeable aspect of these relations is that
the ratio

r21 =
K22

�1�

K11
�1� = 1 −

3eS

2

�6 − e�S + 2��
�3 + e�S − 1��2 �52�

is exactly equal to the one already found in Eq. �42� and does
not depend on 
, the quadrupolar momentum of the nematic
molecule, it is completely determined by the eccentricity e
and scalar order parameter S. Below, in Eq. �55�, this same
kind of relation will be found again in the description of the
elasticity given by i2. Otherwise, contrasting with this prop-
erty, the relation r31=K33/K11 also depends on the parameter

, that is,

r31 =
�3 − 2
S��3 − e�1 + 2S��

3�3 + 
S� − e�3 − S�3 − 
�1 + 2S��	
. �53�

Therefore a plot of the experimental data of r21 as a func-
tion of S can be used to determine the values of e. After-
wards, once having the value of e, a plot of the ratio r31 as a
function of S can be used to determine the ratio 
. As the
elastic constants depend on e, 
, CB, and S, a further single
determination of CB would be enough to simultaneously de-
termine the values of K11, K22, and K33 as a function of S. We
have employed this procedure to the determination of the
elastic constants, and the results are plotted in Fig. 1. The
values for S have been taken from the universal order param-
eter profile �51–53�, and the experimental data of the elastic-
ity of the MBBA have been taken from �12�. A simple ex-
amination of this figure shows that notwithstanding the
agreement of the curves of K11 and K22 with the experimental
data is good, the same does not happen with K33. Indeed,
there is not any agreement between the two curves and, it can
be affirmed without doubt, that the use of i1 to the calculus of
K33 is poor. Nevertheless, we have presented such results
here because even being negative for the calculus of K33, it
strongly exhibits the reasons for the differences for the ratios

r21 and r31 already reported in the literature �24�. It becomes
clear when the procedure used to arrive at the results of Fig.
1 is remembered. According to the relations found above,
through the eccentricity parameter e and scalar order param-
eter S, the ratio r21 is completely determined by the geometry
of the correlated volume. Otherwise, the ratio r31 also depend
on the quadrupolar momentum of the nematic molecule, and
it would also strongly depend on the coupling between the
relative distance of the interacting molecules and its relative
orientations. So, this fact would be contained in our starting
relation for the calculations of K33. As we see in Eq. �42� this
is exactly the physical fact stressed by i2, consequently, it is
a better starting point for the calculus of the elastic energy
than i1.

Let us now consider the elasticity predicted by i2,

F2 = F0 +� d3r1d3r2a2�r�2 − r�1��rirjIij�m̂, n̂��

= F0 +
1

2
� d3r1d3ra2�r�����AQij + Bgij�Qj

k�r�1�

��AQmn + Bgmn�DmDnQki�r�1��	 , �54�

where Eq. �45� has been used. Following the same procedure

FIG. 1. �Color online� Elastic constants of the
4-methoxybenzylidene-4-n-butylailine �MBBA�. The dots corre-
spond to the experimental data, as measured by Jeu et al. �12�. The
dashed line corresponds to the fitting obtained with the use of Eq.
�51�. As explained along the work, the fitting was performed in such
a way that the ratio r21, Eq.�52�, was used to obtain the value of the
eccentricity, e=0.78, the ratio r31 was used to obtain the value of

=−2.51, which is proportional to quadrupolar momentum, Eq.
�49�. The overall constant assumed the value c1=−8.28. The fact
that, differently from r21, r31 depends on the quadrupolar moment
suggests that to obtain a better fitting to K33, the invariant from
which the elastic constants are calculated must contain the quadru-
polar momentum from the beginning. The invariant i2 is in accord
with this requirement; the continuous line over the experimental
data corresponds to the fitting obtained with it. The adjustment was
obtained by a procedure similar to the one described above, where
the parameter e=0.78 was obtained from the ratio r21, and 
1

=−1.44 and 
2=8.27 have been determined from the data of r31.
The overall constant assumed the value c1=−4.94.
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used above we arrive at an equation similar to Eq. �45�, but
with the elastic constants given by

K11
�2� =

− c1S2

27�3 − e�1 − S��3�3 − e�1 + 2S��
�1,

K22
�2� = �1 −

3eS

2

�6 − e�S + 2��
�3 + e�S − 1��2�K11

�2�,

K33
�2� =

− c1S2

27�3 − e�1 − S��3�3, �55�

where

�1 = 9�3 − e�1 − S��2�63 − 3e�14 + S� + e2�7 + S + 10S2��

− 3S�40e4S4 + �3 − e���3 − e�3 + 52�3 − e�2eS + 33�3

− e�e2S2 + 22e3S3�	
1 − 2S2�4�3 − e�3 + 18�3 − e�2eS

− 3�3 − e�e2S2 + 10e3S3��3 − e�1 + 2S��
2

�3 = „9�3 + e�− 1 + S���63 − 6e�7 + 2S� + e2�7 + 4S�1

+ 4S��	 − 3S�− 19�− 3 + e�3 + 48�− 3 + e�2eS − 12�− 3

+ e�e2S2 + 64e3S3�
1 + 2S2�− 5�− 3 + e�3 + 42�− 3

+ e�2eS + 12�− 3 + e�e2 S2 + 32e3S3�
2… �56�

and

c1 =� d3ra2�r���B�r���2 =
1

9
� d3rr4a2�r�� ,


1 =
� d3ra2�r��B�r��A�r�

� d3ra2�r���B�r���2

= 2
� d3ra2�r��r2rmrnQmn

� d3rr4a2�r��
,


2 =
� d3ra2�r���A�r���2

� d3ra2�r���B�r���2

= 4
� d3ra2�r��rmrnrorpQmnQop

� d3rr4a2�r��
.

�57�

Again, from the ratio between the elastic constants, will see
that the ratio r21 remained equal to the one found before.
Nevertheless, now r31 depends on two parameters, 
1 and 
2.
As an easy inspection can show, 
1 measures the quadrupolar
momentum, being, therefore, similar to the parameter 

found in Eq. �51�. There is in fact only a new parameter 
2,
which is quadratic in the quadrupolar momentum. Using the
exact same procedure described above; use of r21 to deter-
mine e and r31 to determine 
1 and 
2, we have found the
value for MBBA, the fitting curve is also exhibited in Fig. 1.
The quality of the global agreement that has been found
indicates that our model gives a very good estimative for the
elastic constants. General comments on this model will be
made in the next section.

IV. FINAL REMARKS AND CONCLUSION

In this work we have shown that a nematic liquid crystals’
sample, with a nonhomogeneous director profile, can be de-
scribed as a nonflat differentiable manifold with a non-null
scalar curvature determined by two kinds of usual nematic
textures; the bend and the saddle-splay terms, both related
with the nematic elasticity. So, it would be important to dis-
cuss the physical meaning of the non-null value found for the
scalar curvature R. We have proved that according to the
affine-connection approach the textures of a nonhomoge-
neous nematic sample are described by a three-dimensional
non-null curved surface, which is, by construction, the sur-
face determined by the nonhomogeneous director profile
along the sample. A non-null R implies that there is not a
system of coordinates where R can be made null; or, using a
“physical analogy,” such a surface cannot be continuously
deformed to another surface with a homogeneously aligned
director profile �43�. This is the reason why the twist and
splay elastic deformations are not present in R. As it is well-
known, the twist texture can be visualized as a sequence of
planes in which, in each of them, the director is homoge-
neously aligned. As for a twisted texture a simple rotation
could restore the homogeneous global alignment and it
would have a null curvature. Likewise, save for a point—the
singular point—the splay texture is flat; it has a null curva-
ture. In fact, it would have the same topology of a cone,
which also has a null curvature and a singular point at its
pole. An interesting aspect of this result is that it exposes a
curious contrast between the elasticity and curvature of a
nematic sample; there are elastic deformations that do not
contribute to the curvature as well as there are curvature
terms that do not present a contribution to the elasticity.
Namely, while the splay and twist terms contribute to the
elasticity, they do not present any direct contribution to the
scalar curvature and, otherwise, while the saddle-splay term
only contributes to the elastic energy at the surface of the
sample, its contribution to the curvature is spread along the
entire nematic sample.

As a consequence of these results, the differentiation rules
have been modified with the introduction of a metric that
realizes the affine connection hypothesis: the potential gen-
erated by an ellipsoidal nematic molecule can be obtained
through the distortion of the potential of a spherical mol-
ecule, which is deformed until it assumes the form of the
corresponding ellipsoid. As the deformation of a sphere to an
ellipsoid is described by an object that has the same form of
the order parameter, it can be taken as a microscopic order
parameter and, in the passage from the microscopic order
parameter to a macroscopic order parameter the induced met-
ric becomes temperature dependent. It is important to detach
that the present theory applies to any LC whose molecules
interact via a potential with ellipsoidal symmetry, even if the
molecules themselves are not ellipsoidally shaped.

As an exercise of the application of this formalism we
have applied it to the description of the bulk elasticity terms
of a nematic sample, and compared to the results with the
experimental data of the MBBA. With this procedure we
have described the profile of the experimental data with very
secure accuracy and estimated the values of some parameters
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of our model, mainly the eccentricity e of the nematic mol-
ecules. We have also obtained an estimate for the quadrupo-
lar moments of the interaction.

As important as the quality of the profiles that we have
obtained, other important aspects of the nematic elasticity
have been revealed. First, our approach suggests an explana-
tion to the recently reported systematic differences found in
the values of the ratios r21=K22/K11 and r31=K33/K11 �24�.
While r21 is completely determined by the molecular eccen-
tricity e and the scalar order parameter S, the ratio r31 also
depends on the quadrupolar moments of the molecules. Fur-
thermore, there are some suggestions in the liquid crystals’
literature �46� that, in the absence of a nematic-solid or a
nematic-smectic transition, the elastic constants would di-
verge as S→1. Our result is consistent with this speculation,
but only with the additional condition that e→1, an infinitely
thin nematic molecule.

Our result also suggests that a further study of the nematic
elasticity must be undertaken in such a way that the above
parameters, e, 
1, and 
2 may be compared for some liquid
crystal compounds. This work in under execution and the
results will appear elsewhere.

Finally, we would like to point out that the use of the
above formulas is not restricted to the calculus of the elastic
constant. In fact, the affine connection approach has been
originally introduced to the calculus of the nematic viscosity,
and the approach introduced here can be used for the calcu-
lus of any aspect of the nematic fluid dynamics.
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